648 research outputs found

    Suppression of spin relaxation in an InAs nanowire double quantum dot

    Full text link
    We investigate the triplet-singlet relaxation in a double quantum dot defined by top-gates in an InAs nanowire. In the Pauli spin blockade regime, the leakage current can be mainly attributed to spin relaxation. While at weak and strong inter-dot coupling relaxation is dominated by two individual mechanisms, the relaxation is strongly reduced at intermediate coupling and finite magnetic field. In addition we observe a charateristic bistability of the spin-non conserving current as a function of magnetic field. We propose a model where these features are explained by the polarization of nuclear spins enabled by the interplay between hyperfine and spin-orbit mediated relaxation.Comment: 5 pages, 4 figure

    Kondo Effect in a Many-Electron Quantum Ring

    Full text link
    The Kondo effect is investigated in a many-electron quantum ring as a function of magnetic field. For fields applied perpendicular to the plane of the ring a modulation of the Kondo effect with the Aharonov-Bohm period is observed. This effect is discussed in terms of the energy spectrum of the ring and the parametrically changing tunnel coupling. In addition, we use gate voltages to modify the ground-state spin of the ring. The observed splitting of the Kondo-related zero-bias anomaly in this configuration is tuned with an in-plane magnetic field.Comment: 4 pages, 4 figure

    Gate tunability of stray-field-induced electron spin precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe grating

    Full text link
    Time-resolved Faraday rotation is used to measure the coherent electron spin precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe grating. We show that the electron spin precession frequency can be modified by applying a gate voltage of opposite polarity to neighboring bars. A tunability of the precession frequency of 0.5 GHz/V has been observed. Modulating the gate potential with a gigahertz frequency allows the electron spin precession to be controlled on a nanosecond timescale

    Singlet-Triplet Transition Tuned by Asymmetric Gate Voltages in a Quantum Ring

    Full text link
    Wavefunction and interaction effects in the addition spectrum of a Coulomb blockaded many electron quantum ring are investigated as a function of asymmetrically applied gate voltages and magnetic field. Hartree and exchange contributions to the interaction are quantitatively evaluated at a crossing between states extended around the ring and states which are more localized in one arm of the ring. A gate tunable singlet-triplet transition of the two uppermost levels of this many electron ring is identified at zero magnetic field.Comment: 4 page

    Towards electron transport measurements in chemically modified graphene: The effect of a solvent

    Full text link
    Chemical functionalization of graphene modifies the local electron density of the carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on the electron transport. Latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, the isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look on the influence of solvents used for chemical modification in order to understand their influence
    corecore